An Independent Internal Cooling System for Promoting Heat Dissipation during Dry Cutting with Numerical and Experimental Verification
نویسندگان
چکیده
The cooling system has emerged as an effective way to alleviate the excessive heat generation during dry cutting processes. In this paper, we investigated a novel type of internal cooling system, independent of additional mechanical accessories, as a promising cooling alternative. The proposed system is devised as connected internal fluid channels of a-“V” shape created according to the geometric shape of the tool-holder. Enabling quantitative evaluation of the effectiveness of the proposed system, a new numerical approach is established. Within the approach, heat transfer equations are deduced according to thermodynamics; parameters of the equations are specified via analytical modeling. As a result, cutting temperatures can be estimated with high precision according to the outlet temperature. Moreover, a cutting experiment was carried out to verify the effectiveness of the proposed numerical approach. Tool-chip interface temperatures were measured using an infrared thermal imager. Smooth measurements with suppressed noises are derived based on a new adaptive mean filter originated by empirical mode decomposition (EMD). The experimental results demonstrate the proposed system can reduce the temperature substantially (almost 30% at the measuring point) and the results are highly consistent with those of numerical simulation. The proposed cooling system is a prospective enhancement for development of smart cutting tools.
منابع مشابه
Experimental and Numerical Investigations on Al2O3–Tricosane Based Heat Pipe Thermal Energy Storage
The enhancement of operating life cycle of electronic devices necessitates the development of efficient cooling techniques. Therefore, in the present work the effects of employment of Phase Change Material, in the adiabatic section of heat pipe for electronic cooling applications were experimentally and numerically investigated. Tricosane (100 ml) is chosen as PCM in this study, where Al2O3 nan...
متن کاملNumerical and Analytical Study of Natural Dry Cooling Tower in a Steam Power Plant
Design of a natural dry cooling tower has been accomplished in two sections: the design of heat exchangers and the numerical solution of flow through the tower. Heat exchanger (Heller type) has been simulated thermodynamically and then coupled with a computer program, which calculated the turbulent natural convection flow through the tower. The computer program developed for this purpose can be...
متن کاملNumerical and Analytical Study of Natural Dry Cooling Tower in a Steam Power Plant
Design of a natural dry cooling tower has been accomplished in two sections: the design of heat exchangers and the numerical solution of flow through the tower. Heat exchanger (Heller type) has been simulated thermodynamically and then coupled with a computer program, which calculated the turbulent natural convection flow through the tower. The computer program developed for this purpose can be...
متن کاملOn temperatures and tool wear in machining hypereutectic Al–Si alloys with vortex-tube cooling
This study investigates dry machining of hypereutectic silicon–aluminum alloys assisted with vortex-tube (VT) cooling. The objective is to reduce cutting temperatures and tool wear by enhanced heat dissipation through the chilled air generated by a VT. A machining experiment, cutting mechanics analysis, and temperature simulations are employed to (1) model the heat transfer of a cutting tool sy...
متن کاملMachinability Improvement of 17-4PH Stainless Steel by Cryogenic Cooling
17-4PH stainless steel is a martensitic precipitation hardening stainless steel that provides an outstanding combination of high strength, good corrosion resistance, good mechanical properties, good toughness in both base metal and welds, and short time, low-temperature heat treatments that minimize warpage and scaling. This valuable alloy is widely used in the aerospace, nuclear, chemical, pet...
متن کامل